1,978 research outputs found

    Constraining the False Positive Rate for Kepler Planet Candidates with Multi-Color Photometry from the GTC

    Full text link
    Using the OSIRIS instrument installed on the 10.4-m Gran Telescopio Canarias (GTC) we acquired multi-color transit photometry of four small (Rp < 5 R_Earth) short-period (P < 6 days) planet candidates recently identified by the Kepler space mission. These observations are part of a program to constrain the false positive rate for small, short-period Kepler planet candidates. Since planetary transits should be largely achromatic when observed at different wavelengths (excluding the small color changes due to stellar limb darkening), we use the observed transit color to identify candidates as either false positives (e.g., a blend with a stellar eclipsing binary either in the background/foreground or bound to the target star) or validated planets. Our results include the identification of KOI 225.01 and KOI 1187.01 as false positives and the tentative validation of KOI 420.01 and KOI 526.01 as planets. The probability of identifying two false positives out of a sample of four targets is less than 1%, assuming an overall false positive rate for Kepler planet candidates of 10% (as estimated by Morton & Johnson 2011). Therefore, these results suggest a higher false positive rate for the small, short-period Kepler planet candidates than has been theoretically predicted by other studies which consider the Kepler planet candidate sample as a whole. Furthermore, our results are consistent with a recent Doppler study of short-period giant Kepler planet candidates (Santerne et al. 2012). We also investigate how the false positive rate for our sample varies with different planetary and stellar properties. Our results suggest that the false positive rate varies significantly with orbital period and is largest at the shortest orbital periods (P < 3 days), where there is a corresponding rise in the number of detached eclipsing binary stars... (truncated)Comment: 13 pages, 12 figures, 3 tables; revised for MNRA

    Transit Timing Observations from Kepler: VII. Confirmation of 27 planets in 13 multiplanet systems via Transit Timing Variations and orbital stability

    Full text link
    We confirm 27 planets in 13 planetary systems by showing the existence of statistically significant anti-correlated transit timing variations (TTVs), which demonstrates that the planet candidates are in the same system, and long-term dynamical stability, which places limits on the masses of the candidates---showing that they are planetary. %This overall method of planet confirmation was first applied to \kepler systems 23 through 32. All of these newly confirmed planetary systems have orbital periods that place them near first-order mean motion resonances (MMRs), including 6 systems near the 2:1 MMR, 5 near 3:2, and one each near 4:3, 5:4, and 6:5. In addition, several unconfirmed planet candidates exist in some systems (that cannot be confirmed with this method at this time). A few of these candidates would also be near first order MMRs with either the confirmed planets or with other candidates. One system of particular interest, Kepler-56 (KOI-1241), is a pair of planets orbiting a 12th magnitude, giant star with radius over three times that of the Sun and effective temperature of 4900 K---among the largest stars known to host a transiting exoplanetary system.Comment: 12 pages, 13 figures, 5 tables. Submitted to MNRA

    Measurement of leptonic and hadronic decays of omega- and phi-mesons at RHIC by PHENIX

    Full text link
    The PHENIX experiment at RHIC measured production of the \omega- and \phi- mesons in p+p, d+Au and Au+Au collisions at \sqrt{s_NN} = 63 and 200 GeV. Particle properties were studied using hadronic and di-electron decay channels. Transverse momentum (mass) spectra measured in different decay modes are found to be in agreement with each other within the errors. Nuclear modification factors R_{AA} measured for both mesons are consistent with results previously obtained for other neutral mesons. Position of the meson mass peaks and their widths reconstructed in hadronic decay channels are in agreement with their properties measured in vacuum.Comment: QM2006 proceedings 4 pages, 3 plot

    ϕ\phi- meson Production at RHIC energies using the PHENIX Detector

    Full text link
    Light vector mesons are among the most informative probes to understand the strongly coupled Quark Gluon Plasma created at RHIC. The suppression of light mesons at high transverse momentum, compared to expectations from scaled p+pp+p results, reflects the properties of the strongly interacting matter formed. The ϕ\phi-meson is one of the probes whose systematic measurement in p+pp+p, d+Aud+Au and Au+AuAu+Au collisions can provide useful information about initial and final state effects on particle production. The mass, width and branching ratio of the ϕ\phi-meson decay in the di-kaon and di-electron decay channels could be modified in \au collisions due to the restoration of chiral symmetry in the QGP. The PHENIX experiment at RHIC has measured ϕ\phi-meson production in various systems ranging form p+pp+p, d+Aud+Au to Au+AuAu+Au collisions via both its di-electron and di-kaon decay modes. A summary of PHENIX results on invariant spectra, nuclear modification factor and elliptic flow of the ϕ\phi-meson are presented here

    Habitable Planet Formation in Binary-Planetary Systems

    Get PDF
    Recent radial velocity observations have indicated that Jovian-type planets can exist in moderately close binary star systems. Numerical simulations of the dynamical stability of terrestrial-class planets in such environments have shown that, in addition to their giant planets, these systems can also harbor Earth-like objects. In this paper, we study the late stage of terrestrial planet formation in such binary-planetary systems, and present the results of the simulations of the formation of Earth-like bodies in their habitable zones. We consider a circumprimary disk of Moon- to Mars-sized objects and numerically integrate the orbits of these bodies at the presence of the Jovian-type planet of the system and for different values of the mass, semimajor axis, and orbital eccentricity of the secondary star. Results indicate that, Earth-like objects, with substantial amounts of water, can form in the habitable zone of the primary star. Simulations also indicate that, by transferring angular momentum from the secondary star to protoplanetary objects, the giant planet of the system plays a key role in the radial mixing of these bodies and the water contents of the final terrestrial planets. We will discuss the results of our simulation and show that the formation of habitable planets in binary-planetary systems is more probable in binaries with moderate to large perihelia.Comment: 27 pages, 11 figures, submitted for publicatio

    On the Migration of Jupiter and Saturn: Constraints from Linear Models of Secular Resonant Coupling with the Terrestrial Planets

    Full text link
    We examine how the late divergent migration of Jupiter and Saturn may have perturbed the terrestrial planets. We identify six secular resonances between the nu_5 apsidal eigenfrequency of Jupiter and Saturn and the four eigenfrequencies of the terrestrial planets (g_{1-4}). We derive analytic upper limits on the eccentricity and orbital migration timescale of Jupiter and Saturn when these resonances were encountered to avoid perturbing the eccentricities of the terrestrial planets to values larger than the observed ones. If Jupiter and Saturn migrated with eccentricities comparable to their present day values, smooth migration with exponential timescales characteristic of planetesimal-driven migration (\tau~5-10 Myr) would have perturbed the eccentricities of the terrestrial planets to values greatly exceeding the observed ones. This excitation may be mitigated if the eccentricity of Jupiter was small during the migration epoch, migration was very rapid (e.g. \tau<~ 0.5 Myr perhaps via planet-planet scattering or instability-driven migration) or the observed small eccentricity amplitudes of the j=2,3 terrestrial modes result from low probability cancellation of several large amplitude contributions. Further, results of orbital integrations show that very short migration timescales (\tau<0.5 Myr), characteristic of instability-driven migration, may also perturb the terrestrial planets' eccentricities by amounts comparable to their observed values. We discuss the implications of these constraints for the relative timing of terrestrial planet formation, giant planet migration, and the origin of the so-called Late Heavy Bombardment of the Moon 3.9+/-0.1 Ga ago. We suggest that the simplest way to satisfy these dynamical constraints may be for the bulk of any giant planet migration to be complete in the first 30-100 Myr of solar system history.Comment: Accepted for publication in The Astrophysical Journa

    Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System

    Full text link
    It has been suggested that the long-lived residual radial velocity variations observed in the precision radial velocity measurements of the primary of Gamma Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of this plant is studied and also the possibility of the existence of a hypothetical Earth-like planet in the habitable zone of its central star is discussed. Simulations, which have been carried out for different values of the eccentricity and semimajor axis of the binary, as well as the orbital inclination of its Jupiter-like planet, expand on previous studies of this system and indicate that, for the values of the binary eccentricity smaller than 0.5, and for all values of the orbital inclination of the Jupiter-like planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For larger values of the binary eccentricity, the system becomes gradually unstable. Integrations also indicate that, within this range of orbital parameters, a hypothetical Earth-like planet can have a long-term stable orbit only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio

    The Detection and Characterization of a Nontransiting Planet by Transit Timing Variations

    Full text link
    The Kepler Mission is monitoring the brightness of ~150,000 stars searching for evidence of planetary transits. As part of the "Hunt for Exomoons with Kepler" (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered using the publicly available data for KOI-872. Planet b transits the host star with a period P_b=33.6d and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P_c=57.0d) of mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8d period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.Comment: Accepted for publication in Science. Published online on May 10, 2012. Main Text and supplemental information included in a single merged file, 58 page

    Resonant inclination excitation of migrating giant planets

    Full text link
    The observed orbits of extrasolar planets suggest that many giant planets migrate a considerable distance towards their parent star as a result of interactions with the protoplanetary disk, and that some of these planets become trapped in eccentricity-exciting mean motion resonances with one another during this migration. Using three-dimensional numerical simulations, we find that as long as the timescale for damping of the planets' eccentricities by the disk is close to or longer than the disk-induced migration timescale, and the outer planet is more than half the mass of the inner, resonant inclination excitation will also occur. Neither the addition of a (simple, fixed) disk potential, nor the introduction of a massive inner planetary system, inhibit entry into the inclination resonance. Therefore, such a mechanism may not be uncommon in the early evolution of a planetary system, and a significant fraction of exoplanetary systems may turn out to be non-coplanar.Comment: to appear in ApJ 597, November 1, 200
    corecore